新闻中心

ag最新网站基于SVM的传感器非线性特性校正新方法

发布日期:2021-04-03 15:21

  教授提出的基于统计学习理论的新一代机器学习技术,它有效地解决了小样本学习问题,因此该方法对样本数量没有特殊的要求。实验证明该方法有效,同时研究表明该方法也能用于其他系统的非线性校正。

  现 代控制系统对传感器的准确度、稳定性和工作条件等方面提出了很高的要求。然而,从严格意义上来说,目前绝大多数传感器特性都不理想,其输入输出特性大多为 非线性关系。为此,人们通过一些方法来进行非线性补偿和修正。特别是近年来,随着神经网络的发展,有不少学者提出了基于神经网络进行非线性传感特性校正的 方法。这些方法一般是用一个多层的前馈神经网络去映射传感器特性曲线的反函数作为校正环节,算法相对简单,实现容易。

  但是通过分析神经网络的基本工作原理,笔者认为该方法依然存在一些不足[1、6]:1)在训练过程中神经网络极容易陷入局部最小,而不能得到全局最小;2)神经网络过分依赖训练数据的质量和数量,ag最新网站但大多数情况下样本数据十分有限,由于噪声影响,存在数据不一致情况,对神经网络的训练结果影响较大;3)输入数据往往是高维的,而训练结果仅是输入空间的稀疏分布,所以大量的高维数据必然会大大增加算法的训练时间。

  支持向量机SVM[4,5](Support Vector Machine)是基于统计学习理论的一种新的学习方法,最早由Vapnik教授及其合作者于上世纪90年 代中期提出。由于其优良特性,最近引起了许多研究者的兴趣。支持向量机主要用于模式识别,目前在该方面成功的范例较多;与模式识别相比,支持向量机用于函 数拟合的成功应用较少。和神经网络相比,支持向量机是基于统计学习理论的小样本学习方法,采用结构风险最小化原则,具有很好的泛化性能;而神经网络是基于 大样本的学习方法,采用经验风险最小化原则。

  将支持向量机函数拟合技术应用于传感器非线性特性校正的研究刚起步,国内尚无先例。如何在传感器非线性特性校正领域充分发挥支持向量机函数拟合的技术优势,解决神经网络方法中的缺陷是一个值得研究的问题。

  与支持向量机的研究最初是针对模式识别中的线]相似,先分析线性样本点的线性函数拟合问题,拟合函数以线性函数的特性出现,可用形式=Tx+b表示。假设所有训练数据{xi,yi}能在精度下无误差地用线性函数拟合,即